

CANKAYA UNIVERSITY DEPARTMENT OF MATHEMATICS

MATH 158 - Calculus for Engineering II

Final Examination

26.08.2022

	Question	Grade	Out of
	1		20
Student Number:	2		20
Name-Surname:	3		20
Signature:	4		20
Duration: 100 minutes	5		20
	6		20
	Total		120

IMPORTANT NOTES:

- Check that the exam paper contains 6 questions.
- Show all steps of your work. Both the correct method and correct result are necessary to get full point.

1) Evaluate the following limits (if they exist):

a) (10 points)
$$\lim_{(x,y)\to(0,0)} \frac{2x^3 + 4y^2}{x^2 + y^2}$$

b) (10 points)
$$\lim_{(x,y) \to (0,0)} \frac{x^2 y^4}{x^6 + y^4}$$

2) This question has three independent parts.

a) (6 points) Let
$$f(x,y) = \frac{x \sin x}{1 + e^x} - 3x^3y^4 + 12 \ln y$$
. Find f_{yy} .

b) (7 points) Let $y^2 z \ln x + 4x^3 y - (1 + x^2)e^{z-4} = 6$. Find the value of z_x at x = 1, y = 2, z = 4.

c) (7 points) Let
$$f = u^2 + v^3$$
, $u = 2xy$, $v = x^2 + y^2$.
Find the value of $\frac{\partial f}{\partial x}$ at $x = 3$, $y = 1$.

3) Find and classify the critical points of the function:

 $f(x,y) = 6x^3 + 2xy^2 - 18x + 12$

4) Find the maximum and minimum values of the function f(x,y) = xy + 18 subject to the constraint $x^2 + 4y^2 = 16$.

5) Evaluate the following the double integrals:

a) (10 points)
$$\int_{1}^{3} \int_{0}^{2} \frac{2xy^{3}}{1+x^{2}} dy dx$$

b) (10 points)
$$\int_0^8 \int_{x/4}^2 e^{y^2} \, dy \, dx$$

6) Evaluate the integral $\iint_A \sqrt{x^2 + y^2} \, dy \, dx$ where A is the region indicated in the figure:

Final Exam - Solutions
(1) (a) Along
$$y=0$$
: $\lim_{X\to 0} \frac{2x^3}{x^2} = \lim_{X\to 0} 2x=0$
Along $x=0$: $\lim_{y\to 0} \frac{4y^2}{y^2} = \lim_{y\to 0} 4 = 4$
 $\lim_{y\to 0} \frac{y}{y^2} = \frac{y}{y+0}$
 $\lim_{y\to 0} \frac{2r^3\cos^3\theta + 4r^3\sin^2\theta}{r^2} = \lim_{x\to 0} \frac{2r\cos^3\theta + 4\sin^2\theta}{r+0} = \lim_{x\to 0} \frac{2r\cos^3\theta + 4\sin^3\theta}{r+0} = \lim_{x\to 0} \frac{2r\cos^3\theta + 4\sin^3\theta}{r+0} = \lim_{x\to 0} \frac{2r\cos^3\theta + 4\sin^2\theta}{r+0} = \lim_{x\to 0} \frac{2r\cos^3\theta + 4\sin^3\theta}{r+0} = \lim_{x\to 0} \frac{2r\cos^3\theta + 4\sin^3\theta}{r+0} = \lim_{x\to 0} \frac{2r\cos^3\theta + 4\sin^3\theta}{r+0} = \lim_{x\to 0} \frac{2r\cos^3\theta + 4\sin^3\theta}{r$

By send. thm,
$$\lim_{(x,y)\to(0,0)} \frac{\chi^2 y^4}{\chi^5 + y^4} = 0$$

r

(2) (1)
$$f_y(x_1y_1) = 0 - 12x^3y^3 + 12 \cdot \frac{1}{y}$$

 $f_{yy} = -36x^3y^2 - \frac{12}{y^2}$
(b) By Implizit Diff:
 $T(x_1y_1z_1) = y^2z \cdot lnx + 4x^3y - (1+x^2)e^{2-4}$
 $z_x = -\frac{Fx}{Fz}$, $F_x = \frac{y^2z}{x} + 12x^2y - 2xe^{2-4}$
 $F_z = y^2 \cdot lnx - (1+x^2)e^{2-4}$
 $F_z = y^2 \cdot lnx - (1+x^2)e^{2-4}$
 $z_x = -\frac{y^2z}{x} + 12x^2y - 2xe^{2-4}$
 $z_x = -\frac{y^2z}{y^2 \cdot lnx - (1+x^2)e^{2-4}} \Rightarrow \frac{2x}{z} = -\frac{16+24-2}{D-2} = +19$
 $y = 2$
 $z = 4$
() $\frac{2f}{\partial x} = \frac{2f}{\partial u}\frac{2u}{\partial x} + \frac{2f}{\partial v}\frac{\partial v}{\partial x} = 2u^2y + 3v^22x$

$$\frac{\partial f}{\partial x} = 2.6.2.1 + 3.10^{2}.2.3 = 1824$$

x=3,y=1
= u=6,v=10

.

3)
$$f(x_{1}y) = 6x^{3} + 2xy^{2} - 18x + 12$$

 $f_{x} = 18x^{2} + 2y^{2} - 18 = 0$
 $f_{y} = 4xy = 0 \Rightarrow x = 0 \text{ or } y = 0$
 y
 $2y^{2} = 18$ $18x^{2} = 18$
 $y = \mp 3$ $x = \mp 1 \Rightarrow (0, -3), (0, 3), (4, 0), (4, 0)$
 $ere artitical points$
 $A(x_{1}y) = f_{xx} = 36x$, $B(x_{1}y) = f_{yy} = 4x$, $C(x_{1}y) = 4y$
 $A(x_{1}y) = f_{xx} = 36x$, $B(x_{1}y) = f_{yy} = 4x$, $C(x_{1}y) = 4y$
 $A(x_{1}y) = f_{xx} = 36x$, $B(x_{1}y) = f_{yy} = 4x$, $C(x_{1}y) = 4y$
 $A(x_{1}y) = f_{xx} = 36x$, $B(x_{1}y) = f_{yy} = 4x$, $C(x_{1}y) = 4y$
 $A(x_{1}y) = f_{xx} = 36x$, $B(x_{1}y) = f_{yy} = 4x$, $C(x_{1}y) = 4y$
 $A(x_{1}y) = f_{xx} = 36x$, $B(x_{1}y) = f_{yy} = 4x$, $C(x_{1}y) = 4y$
 $A(x_{1}y) = f_{xx} = 36x$, $B(x_{1}y) = f_{yy} = 4x$, $C(x_{1}y) = 4y$
 $A(x_{1}y) = f_{xx} = 36x$, $B(x_{1}y) = f_{yy} = 4x$, $C(x_{1}y) = 4y$
 $A(x_{1}y) = f_{xx} = 36x$, $B(x_{1}y) = f_{yy} = 4x$, $C(x_{1}y) = 4y$
 $A(x_{1}y) = f_{xx} = 36x$, $B(x_{1}y) = f_{yy} = 4x$, $C(x_{1}y) = 4y$
 $A(x_{1}y) = f_{xy} = 36x$, $B(x_{1}y) = f_{yy} = 4x$, $C(x_{1}y) = 4y$
 $A(x_{1}y) = f_{xy} = 36x$, $B(x_{1}y) = f_{yy} = 4x$, $C(x_{1}y) = 4y$
 $A(x_{1}y) = f_{xy} = 36x$, $B(x_{1}y) = f_{yy} = 4x$, $C(x_{1}y) = 4y$
 $A(x_{1}y) = f_{yy} = 4x$, $C(x_{1}y) = 4y$
 $A(x_{1}y) = f_{yy} = 4x$, $C(x_{1}y) = 4y$
 $A(x_{1}y) = f_{yy} = 4x$, $C(x_{1}y) = 4y$
 $A(x_{1}y) = f_{yy} = 4x$, $C(x_{1}y) = 4y$
 $A(x_{1}y) = f_{yy} = 4x$, $C(x_{1}y) = 4y$
 $A(x_{1}y) = 4x$, $A($

$$4) \quad y = \lambda \cdot 2x$$

$$x = \lambda \cdot 8y$$

$$x^{2} + 4y^{2} = 16$$

$$\Rightarrow \quad \lambda = \frac{y}{2x} = \frac{x}{8y} \Rightarrow x^{2} = 4y^{2}$$

$$8y^{2} = 16 \Rightarrow y = \pm \sqrt{2}, \quad x = \pm 2\sqrt{2}$$

$$\frac{(x_{1}y)}{(2\sqrt{2}, \sqrt{2})} = \frac{f(x_{1}y)}{2z} \qquad x = \pm 2\sqrt{2}$$

$$\frac{(x_{1}y)}{(2\sqrt{2}, \sqrt{2})} = \frac{f(x_{1}y)}{14} \qquad x_{1}$$

$$5) \alpha) \int_{1}^{3} \int_{2}^{2} \frac{2 \times y^{3}}{1 + x^{2}} dy dx$$

= $\int_{1}^{3} \frac{2 \times y^{3}}{1 + x^{2}} dx$
= $\int_{1}^{3} \frac{2 \times dx}{1 + x^{2}} dx$
= $4 \int_{1}^{3} \frac{2 \times dx}{1 + x^{2}} dx$
= $4 \ln (1 + x^{2}) \int_{1}^{3} dx$
= $4 \ln (1 + x^{2}) \int_{1}^{3} dx$
= $4 \ln (1 - \ln 2)$
= $4 \ln 5$

56) 2 2 0 8 3x Reverse the Order: $\int_{x_{1_{4}}}^{y} \int_{x_{1_{4}}}^{z} e^{y^{2}} dy dx = \int_{x_{1_{4}}}^{z} \int_{x_{1_{4}}}^{y} e^{y^{2}} dx dy$ $= \int_{0}^{2} 4y e^{y^{2}} dy$ $= 2e^{y^2} \Big|_0^2$ $= 2(e^{4}-1)$ 6) $\int \int \sqrt{x^2 + y^2} \, dy \, dx = \int \int \sqrt{r \cdot r \, dr \, d\theta}$ $= \int_{0}^{0} \frac{r^{3}}{3} \Big|_{0}^{2} d\phi$ $=\frac{g}{3}\int_{0}^{T/3}d\theta$ $=\frac{8}{3}\cdot\frac{11}{3}$ $=\frac{8\pi}{9}$