C̣ankaya University

DEPARTMENT OF MATHEMATICS

MATH 158 - Calculus for Engineering II
 Final Examination

26.08.2022

Student Number:

Name-Surname:

Signature:

Duration: 100 minutes

Question	Grade	Out of
1		20
2		20
3		20
4		20
5		20
6		20
Total		120

IMPORTANT NOTES:

- Check that the exam paper contains 6 questions.
- Show all steps of your work. Both the correct method and correct result are necessary to get full point.

1) Evaluate the following limits (if they exist):
a) (10 points) $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{3}+4 y^{2}}{x^{2}+y^{2}}$
b) (10 points) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{4}}{x^{6}+y^{4}}$
2) This question has three independent parts.
a) (6 points) Let $f(x, y)=\frac{x \sin x}{1+e^{x}}-3 x^{3} y^{4}+12 \ln y$. Find $f_{y y}$.
b) (7 points) Let $y^{2} z \ln x+4 x^{3} y-\left(1+x^{2}\right) e^{z-4}=6$.

Find the value of z_{x} at $x=1, y=2, z=4$.
c) (7 points) Let $f=u^{2}+v^{3}, \quad u=2 x y, v=x^{2}+y^{2}$.

Find the value of $\frac{\partial f}{\partial x}$ at $x=3, y=1$.
3) Find and classify the critical points of the function:

$$
f(x, y)=6 x^{3}+2 x y^{2}-18 x+12
$$

4) Find the maximum and minimum values of the function $f(x, y)=x y+18$ subject to the constraint $x^{2}+4 y^{2}=16$.
5) Evaluate the following the double integrals:
a) (10 points) $\int_{1}^{3} \int_{0}^{2} \frac{2 x y^{3}}{1+x^{2}} d y d x$
b) $(10$ points $) \int_{0}^{8} \int_{x / 4}^{2} e^{y^{2}} d y d x$
6) Evaluate the integral $\iint_{A} \sqrt{x^{2}+y^{2}} d y d x$ where A is the region indicated in the figure:

Final Exam - Solutions

1) a) Along $y=0: \lim _{x \rightarrow 0} \frac{2 x^{3}}{x^{2}}=\lim _{x \rightarrow 0} 2 x=0$

Along $x=0: \lim _{y \rightarrow 0} \frac{4 y^{2}}{y^{2}}=\lim _{y \rightarrow 0} 4=4$
limits ore diff \Rightarrow By two path test limit die
or

$$
\lim _{r \rightarrow 0} \frac{2 r^{3} \cos ^{3} \theta+4 r^{2} \sin ^{2} \theta}{r^{2}}=\lim _{r \rightarrow 0} 2 r \cos ^{3} \theta+4 \sin ^{2} \theta=4 \sin ^{2} \theta
$$

limit depends on $\theta \Rightarrow$ Limit ane.
b) $0 \leq y^{4} \leq y^{4}+x^{6} \Rightarrow 0 \leq \frac{y^{4}}{x^{6}+y^{4}} \leq 1 \Rightarrow 0 \leq \frac{x^{2} y^{4}}{x^{6}+y^{4}} \leq x^{2}$

$$
\operatorname{as}(x, y) \rightarrow(0,0)
$$

By send. the, $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{4}}{x^{6}+y^{4}}=0$.

$$
(x, y) \rightarrow(0,0)
$$

2)

$$
\begin{aligned}
& \text { a) } \begin{array}{l}
f_{y}(x, y)=0-12 x^{3} y^{3}+12 \cdot \frac{1}{y} \\
f_{y y}=-36 x^{3} y^{2}-\frac{12}{y^{2}}
\end{array} \text {, }
\end{aligned}
$$

b) By Impirit Diff:

$$
\left.\begin{aligned}
& F(x, y, z)=y^{2} z \ln x+4 x^{3} y-\left(1+x^{2}\right) e^{z-4} \\
& z_{x}=-\frac{F_{x}}{F_{z}}, \quad F_{x}=\frac{y^{2} z}{x}+12 x^{2} y-2 x e^{z-4} \\
& \quad F_{z}=y^{2} \ln x-\left(1+x^{2}\right) e^{z-4} \\
& z_{x}=-\frac{y^{2} z}{x}+12 x^{2} y-2 x e^{z-4} \\
& y^{2} \ln x-\left(1+x^{2}\right) e^{z-4}
\end{aligned} z_{x} \right\rvert\,=-\frac{16+24-2}{0-2}=+19 .
$$

$$
\text { c) } \begin{aligned}
\frac{\partial f}{\partial x} & =\frac{\partial f}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial x}=2 u 2 y+3 v^{2} 2 x \\
\frac{\partial f}{\partial x} & \mid=2 \cdot 6 \cdot 2 \cdot 1+3 \cdot 10^{2} \cdot 2 \cdot 3=1824 \\
x & =3, y=1 \\
\Rightarrow u & =6, v=10
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3) } f(x, y)=6 x^{3}+2 x y^{2}-18 x+12 \\
& f_{x}=18 x^{2}+2 y^{2}-18=0 \\
& f y=4 x y=0 \Rightarrow x=0 \text { or } y=0 \\
& \downarrow \quad \downarrow \\
& 2 y^{2}=18 \quad 18 x^{2}=18 \\
& \downarrow \\
& y=\mp 3 \quad \downarrow \quad x=\mp 1 \quad \Rightarrow
\end{aligned} \begin{aligned}
& (0,-3),(0,3),(-1,0),(1,0) \\
&
\end{aligned}
$$

ore critical points

$$
A(x, y)=f_{x x}=36 x, \quad B(x, y)=f_{y y}=4 x, \quad C(x, y)=4 y
$$

$\left.\begin{array}{c|cccc} & A & B & C & \Delta=A B-C^{2} \\ \hline(0,-3) & 0 & 0 & -12 & -144<0\end{array}\right]$ saddle
$(0,-3)$ and $(0,3)$ are saddle points
f has a loo min at $(1,0)$, loc max at $(-1,0)$.

$$
\text { 4) } \begin{aligned}
& y==\lambda \cdot 2 x \\
& x=\lambda \cdot 8 y \\
& x^{2}+4 y^{2}=16 \\
& \Rightarrow \lambda=\frac{y}{2 x}=\frac{x}{8 y} \Rightarrow x^{2}=4 y^{2} \\
& 8 y^{2}=16 \Rightarrow y= \pm \sqrt{2}, x= \pm 2 \sqrt{2} \\
& \frac{(x, y)}{} f(x, y) \\
&(2 \sqrt{2}, \sqrt{2}) 22 \\
& \max \\
&(2 \sqrt{2},-\sqrt{2}) 14 \\
&(-2 \sqrt{2}, \sqrt{2}) 14 \\
&(-2 \sqrt{2},-\sqrt{2}) 22
\end{aligned}
$$

5)

$$
\text { a) } \begin{aligned}
& \int_{1}^{3} \int_{0}^{2} \frac{2 x y^{3}}{1+x^{2}} d y d x \\
= & \left.\int_{1}^{3} \frac{2 x}{1+x^{2}}\left(\frac{y^{4}}{4}\right)\right|_{0} ^{2} d x \\
= & 4 \int_{1}^{3} \frac{2 x d x}{1+x^{2}} \\
= & \left.4 \ln \left(1+x^{2}\right)\right|_{1} ^{3} \\
= & 4(\ln 10-\ln 2) \\
= & 4 \ln 5
\end{aligned}
$$

56)

Reverse the order:

$$
\begin{aligned}
\int_{0}^{8} \int_{x / 4}^{2} e^{y^{2}} d y d x & =\int_{0}^{2} \int_{0}^{4 y} e^{y^{2}} d x d y \\
& =\int_{0}^{2} 4 y e^{y^{2}} d y \\
& =\left.2 e^{y^{2}}\right|_{0} ^{2} \\
& =2\left(e^{4}-1\right)
\end{aligned}
$$

6)

$$
\begin{aligned}
\iint_{A} \sqrt{x^{2}+y^{2}} d y d x & =\int_{0}^{\pi / 3} \int_{0}^{2} r \cdot r d r d \theta \\
& =\left.\int_{0}^{\pi / 3} \frac{r^{3}}{3}\right|_{0} ^{2} d \theta \\
& =\frac{8}{3} \int_{0}^{\pi / 3} d \theta \\
& =\frac{8}{3} \cdot \frac{\pi}{3} \\
& =\frac{8 \pi}{9}
\end{aligned}
$$

